metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Hong-Wu Xu,^a Zhong-Ning Chen^a* and Ji-Gui Wu^b

^aState Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Fuzhou, Fujian 350002, People's Republic of China, and ^bDepartment of Chemistry, Lanzhou University, Lanzhou 730000, People's Republic of China

Correspondence e-mail: czn@ms.fjirsm.ac.cn

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.014 Å R factor = 0.063 wR factor = 0.135 Data-to-parameter ratio = 15.6

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

© 2002 International Union of Crystallography Printed in Great Britain – all rights reserved

Bis[μ-bis(diphenylphosphino)amine-κP:P']bis[acetonitrilesilver(I)] tris(cis-1,2-dicyanoethylene-1,2-dithiolate)molybdate(IV)

The reaction between the metal diphosphine $[Ag_2(dppa)_2]$ - $(BF_4)_2$ [dppa is bis(diphenylphosphino)amine, $C_{24}H_{21}N_2P_2$] and the metal thiolate $[Bu_4N]_2[Mo(mnt)_3]$ (mnt is *cis*-1,2dicyanoethylene-1,2-dithiolate, $C_4N_2S_2$) gave the title compound, $[Ag_2(dppa)_2(MeCN)_2][Mo(mnt)_3]$. The $Ag \cdots Ag$ distance of 2.9501 (13) Å is shorter than the sum of van der Waals radii for two Ag atoms, indicating a weak metal-metal contact in the complex. The cation lies on an inversion centre and the anion lies on a twofold axis.

Comment

Interest in the metal complexes of diphosphine compounds has grown rapidly in recent years (Yam *et al.*, 1998). We are interested in the design of photoluminescent heterometallic cluster complexes by self-assembly between two metal components, one with potential bridging donors and the other with substitutable or vacant coordination sites (Xu *et al.*, 2002). Thus, the reaction between $[Bu_4N]_2[Mo(mnt)_3]$ (mnt is *cis*-1,2-dicyanoethylene-1,2-dithiolate), with potential bridging sulfur donors, and $[Ag_2(dppa)_2]^{2+}$ [dppa is bis(diphenylphosphino)amine], with vacant coordination sites, was expected to afford an Ag–Mo heteronuclear species. However, the only isolated product of the reaction between $[Bu_4N]_2[Mo(mnt)_3]$ and $[Ag_2(dppa)_2](BF_4)_2$ was the title compound $[Ag_2(dppa)_2(MeCN)_2][Mo(mnt)_3]$, (I), in which

 $[Mo(mnt)_3]^{2-}$ acts only as an anion. A perspective drawing of the complex with the atomic numbering scheme is depicted in Fig. 1 and selected bonding parameters are presented in Table 1. The Ag^I atoms are located in a distorted triangularplanar environment of a P₂N chromophore and the Ag···Ag distance [2.9501 (13) Å] is shorter than the sum of the van der Waals radii of two Ag atoms, indicating a weak metal-metal contact; the two Ag atoms are bridged by P–N–P groups of two dppa molecules. The Mo atom is located in an octahedral environment of six S atoms, and the Mo–S distances [2.382 (2)–2.385 (2) Å] are silmilar to those observed in [Ph₄As]₂[Mo(mnt)₃] (Brown & Stiefel, 1973). Received 25 September 2002 Accepted 7 October 2002 Online 18 October 2002

Figure 1

A view of the title complex with the atomic numbering scheme; symmetry-related atoms have a suffix A. Displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted for clarity.

Experimental

The starting materials $[Bu_4N]_2[Mo(mnt)_3]$ (Stiefel *et al.*, 1970) and $[Ag_2(dppa)_2](BF_4)_2$ (Sekabange *et al.*, 2002) were prepared according to the reported procedures. The reaction between equimolar qualtities of $[Ag_2(dppa)_2](BF_4)_2$ and $[Bu_4N]_2[Mo(mnt)_3]$ was carried out in dichloromethane under anaerobic conditions for 1 d, after which the solvent was removed *in vacuo* and the residue was extracted with acetonitrile. Well-shaped dark-green crystals suitable for X-ray diffraction analysis were grown by slow diffusion of diethyl ether into the acetonitrile solution.

Crystal data

H-atom parameters constrained

$[Ag_2(C_{24}H_{21}N_2P_2)_2(C_2H_3N)_2]$ -	$D_x = 1.517 \text{ Mg m}^{-3}$	
$[Mo(C_4N_2S_2)_3]$	Mo $K\alpha$ radiation	
$M_r = 1585.1$	Cell parameters from 5955	
Orthorhombic, Pbcn	reflections	
a = 17.181 (3) Å	$\theta = 1.5 - 25.1^{\circ}$	
b = 15.313 (3) Å	$\mu = 1.06 \text{ mm}^{-1}$	
c = 26.386(5) Å	T = 293 (2) K	
$V = 6942 (2) \text{ Å}^3$	Prism, dark green	
Z = 4	$0.36 \times 0.34 \times 0.28 \text{ mm}$	
Data collection		
Siemens SMART CCD	6143 independent reflections	
diffractometer	3749 reflections with $I > 2\sigma(I)$	
ω scans	$R_{\rm int} = 0.080$	
Absorption correction: multi-scan	$\theta_{\rm max} = 25.1^{\circ}$	
(SADABS; Sheldrick, 1996)	$h = -13 \rightarrow 20$	
$T_{\rm min} = 0.729, T_{\rm max} = 1.000$	$k = -18 \rightarrow 17$	
19 737 measured reflections	$l = -31 \rightarrow 21$	
Refinement		
Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0205P)^2]$	
$R[F^2 > 2\sigma(F^2)] = 0.063$	+ 30.6018P]	
$wR(F^2) = 0.135$	where $P = (F_o^2 + 2F_c^2)/3$	
S = 1.17	$(\Delta/\sigma)_{\rm max} = 0.001$	
6143 reflections	$\Delta \rho_{\rm max} = 0.40 \ {\rm e} \ {\rm \AA}^{-3}$	
393 parameters	$\Delta \rho_{\rm min} = -0.55 \text{ e} \text{ Å}^{-3}$	

Table 1

Selected geometric parameters (Å, °).

Mo-S2	2.382 (2)	$Ag \cdot \cdot \cdot Ag^i$	2.9501 (13)
Mo-S1	2.384 (2)	P1-N	1.677 (6)
Mo-S3	2.385 (2)	P2-N	1.688 (6)
Ag-P1	2.434 (2)	P2-Ag ⁱ	2.430 (2)
Ag-N1	2.457 (9)	N1-C1	1.111 (13)
$S2^{ii}-Mo-S2$	141 21 (11)	$P1 = A \sigma = N1$	99.9 (2)
$S2^{ii}-Mo-S1$	130.07 (8)	$P2^{i} - Ag \cdots Ag^{i}$	88.65 (5)
S2-Mo-S1	81.88 (7)	$P1 - Ag \cdots Ag^{i}$	88.52 (5)
S2-Mo-S1 ⁱⁱ	130.07 (8)	$N1 - Ag \cdots Ag^i$	84.5 (2)
S1-Mo-S1 ⁱⁱ	81.70 (10)	N-P1-Ag	114.0 (2)
S2 ⁱⁱ -Mo-S3	81.93 (8)	C21-P1-Ag	115.5 (3)
S2-Mo-S3	81.54 (7)	C11-P1-Ag	112.9 (3)
S1-Mo-S3	141.35 (8)	N-P2-Ag ⁱ	114.0 (2)
S1 ⁱⁱ -Mo-S3	82.77 (7)	C41-P2-Agi	112.2 (2)
S2 ⁱⁱ -Mo-S3 ⁱⁱ	81.54 (7)	C31-P2-Ag ⁱ	116.7 (3)
S3-Mo-S3 ⁱⁱ	128.69 (11)	P1-N-P2	125.9 (3)
P2 ⁱ -Ag-P1	156.48 (7)	C1-N1-Ag	168.3 (10)
P2 ⁱ -Ag-N1	103.0 (2)	-	

Symmetry codes: (i) 1 - x, 1 - y, 1 - z; (ii) 1 - x, y, $\frac{3}{2} - z$.

The positions of the H atoms were generated geometrically (C–H fixed at 0.96 Å); these atoms were assigned isotropic displacement parameters and allowed to ride on their respective parent C atoms in the refinement.

Data collection: *SMART* (Siemens, 1994); cell refinement: *SMART* and *SAINT* (Siemens, 1994); data reduction: *XPREP* (Siemens, 1994); program(s) used to solve structure: *SHELXTL* (Siemens, 1994); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

This work was supported by the NSF of China (No. 20171044).

References

Brown, G. F. & Stiefel, E. I. (1973). Inorg. Chem. 12, 2140-2147.

- Sekabange, E. J., Smith, M. L., Webb, T. R. & Hill, W. E. (2002). *Inorg. Chem.* **41**, 1205–1214.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Siemens (1994). SAINT, SMART, XPREP and SHELXTL (Version 5). Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

- Stiefel, E. I., Bennett, L. E., Dori, Z., Crawford, T. H., Simo, C. & Gray, H. B. (1970). *Inorg. Chem.* 9, 281–286.
- Xu, H. W., Chen, Z. N., Ishizaka, S., Kitamuro, N. & Wu, J. G. (2002). Chem. Commun. 17, 1934–1935.
- Yam, V. W.-W., Lo, K. K.-W, Fung, W. K. M. & Wang, C.-R. (1998). Coord. Chem. Rev. 171, 17–41.